Autonomous Control of Space Nuclear Reactors, Phase II

Completed Technology Project (2009 - 2012)

Project Introduction

Nuclear reactors to support future robotic and manned missions impose new and innovative technological requirements for their control and protection instrumentation. Long duration surface missions necessitate reliable autonomous operation, and manned missions impose added requirements for fail-safe reactor protection. There is a need for an advanced instrumentation and control system for space-nuclear reactors that addresses both aspects of autonomous operation and safety. Highly reliable, earth-based reactor instrumentation systems can provide an excellent reference for space-based designs, however there is currently no earth-based reactor control system that is practical for use in space. In Phase I, we established the feasibility of adapting proven terrestrial reactor instrumentation for space application, and developed a preliminary architecture on which to base a flight system. This Phase II will result in a complete detailed design for a space-based Reactor Instrumentation and Control System (RICS), including fabrication and testing of a ground-based prototype for system evaluation. Additionally, we will leverage existing neutron detection technology developed under a previous NASA contract, and optimized for the space environment. This Wide Range Neutron Detector (WRND), in conjunction with the proposed RICS, will provide a complete solution for autonomous operation of space reactors from hundreds of watts to multi-megawatts.

Primary U.S. Work Locations and Key Partners

Autonomous Control of Space Nuclear Reactors, Phase II

Table of Contents

Project Introduction	
Primary U.S. Work Locations	
and Key Partners	1
Organizational Responsibility	1
Project Transitions	2
Project Management	2
Technology Areas	2

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Glenn Research Center (GRC)

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Small Business Innovation Research/Small Business Tech Transfer

Autonomous Control of Space Nuclear Reactors, Phase II

Completed Technology Project (2009 - 2012)

Organizations Performing Work	Role	Туре	Location
☆Glenn Research	Lead	NASA	Cleveland,
Center(GRC)	Organization	Center	Ohio
Aurora Flight	Supporting	Industry	Cambridge,
Sciences Corporation	Organization		Massachusetts

Primary U.S. Work Locations	
Ohio	Virginia

Project Transitions

February 2009: Project Start

September 2012: Closed out

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Technology Areas

Primary:

- TX14 Thermal Management Systems
 - └─ TX14.2 Thermal Control
 Components and Systems
 └─ TX14.2.3 Heat
 Rejection and Storage

